Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Med Internet Res ; 26: e55794, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625718

RESUMO

BACKGROUND: Early detection of adverse events and their management are crucial to improving anticancer treatment outcomes, and listening to patients' subjective opinions (patients' voices) can make a major contribution to improving safety management. Recent progress in deep learning technologies has enabled various new approaches for the evaluation of safety-related events based on patient-generated text data, but few studies have focused on the improvement of real-time safety monitoring for individual patients. In addition, no study has yet been performed to validate deep learning models for screening patients' narratives for clinically important adverse event signals that require medical intervention. In our previous work, novel deep learning models have been developed to detect adverse event signals for hand-foot syndrome or adverse events limiting patients' daily lives from the authored narratives of patients with cancer, aiming ultimately to use them as safety monitoring support tools for individual patients. OBJECTIVE: This study was designed to evaluate whether our deep learning models can screen clinically important adverse event signals that require intervention by health care professionals. The applicability of our deep learning models to data on patients' concerns at pharmacies was also assessed. METHODS: Pharmaceutical care records at community pharmacies were used for the evaluation of our deep learning models. The records followed the SOAP format, consisting of subjective (S), objective (O), assessment (A), and plan (P) columns. Because of the unique combination of patients' concerns in the S column and the professional records of the pharmacists, this was considered a suitable data for the present purpose. Our deep learning models were applied to the S records of patients with cancer, and the extracted adverse event signals were assessed in relation to medical actions and prescribed drugs. RESULTS: From 30,784 S records of 2479 patients with at least 1 prescription of anticancer drugs, our deep learning models extracted true adverse event signals with more than 80% accuracy for both hand-foot syndrome (n=152, 91%) and adverse events limiting patients' daily lives (n=157, 80.1%). The deep learning models were also able to screen adverse event signals that require medical intervention by health care providers. The extracted adverse event signals could reflect the side effects of anticancer drugs used by the patients based on analysis of prescribed anticancer drugs. "Pain or numbness" (n=57, 36.3%), "fever" (n=46, 29.3%), and "nausea" (n=40, 25.5%) were common symptoms out of the true adverse event signals identified by the model for adverse events limiting patients' daily lives. CONCLUSIONS: Our deep learning models were able to screen clinically important adverse event signals that require intervention for symptoms. It was also confirmed that these deep learning models could be applied to patients' subjective information recorded in pharmaceutical care records accumulated during pharmacists' daily work.


Assuntos
Antineoplásicos , Aprendizado Profundo , Síndrome Mão-Pé , Neoplasias , Humanos , Prescrições , Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico
2.
J Microbiol Methods ; 204: 106647, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496031

RESUMO

The PCR technique is indispensable in biology and medicine, but some difficulties are associated with its use, including false positive or false negative amplifications. To avoid these issues, a non-amplification nucleic acid detection protocol is needed. In the present study, we propose a method in which nucleic-acid probe hybridization is combined with thio-NAD cycling to detect nucleic acids without amplification. We report our application of this method for the detection of the gene of MPT64 in Mycobacterium tuberculosis. Two different cDNA probes targeted the mpt64 gene: the first probe was used to immobilize the mpt64 gene, and the second probe, linked with alkaline phosphatase (ALP), was hybridized to a target sequence in the mpt64 gene. A substrate was then hydrolyzed by ALP, and a cycling reaction was conducted by a dehydrogenase with its co-factors (thio-NAD and NADH). The single-stranded DNA, double-stranded DNA, plasmid DNA for the mpt64 gene, and whole genome of M. tuberculosis var. BCG were detected at the level of 105-106 copies/assay, whereas the non-tuberculosis mycobacteria (e.g., M. avium, M. intracellulare, M. kansasii, and M. abscessus) were below the limits of detection. The present method enables us to avoid the errors inherent in nucleic acid amplification methods.


Assuntos
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/genética , Micobactérias não Tuberculosas/genética , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico , DNA Bacteriano/genética , DNA Bacteriano/análise
3.
Curr Issues Mol Biol ; 44(12): 6145-6157, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36547080

RESUMO

Exosomes containing glucose-regulated protein 78 (GRP78) are involved in cancer malignancy. GRP78 is thought to promote the tumor microenvironment, leading to angiogenesis. No direct evidence for this role has been reported, however, mainly because of difficulties in accurately measuring the GRP78 concentration in the exosomes. Recently, exosomal GRP78 concentrations were successfully measured using an ultrasensitive ELISA. In the present study, GRP78 concentrations in exosomes collected from gastric cancer AGS cells with overexpression of GRP78 (OE), knockdown of GRP78 (KD), or mock GRP78 (mock) were quantified. These three types of exosomes were then incubated with vascular endothelial cells to examine their effects on endothelial cell angiogenesis. Based on the results of a tube formation assay, GRP78-OE exosomes accelerated angiogenesis compared with GRP78-KD or GRP78-mock exosomes. To investigate the mechanisms underlying this effect, we examined the Ser473 phosphorylation state ratio of AKT, which is involved in the angiogenesis process, and found that AKT phosphorylation was increased by GRP78-OE exosome application to the endothelial cells. An MTT assay showed that GRP78-OE exosome treatment increased the proliferation rate of endothelial cells, and a wound healing assay showed that this treatment increased the migration capacity of the endothelial cells. These findings demonstrated that GRP78-containing exosomes promote the tumor microenvironment and induce angiogenesis.

4.
Anal Biochem ; 654: 114831, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921878

RESUMO

Exosomes transfer molecules horizontally to surrounding cells and therefore have a key role in cancer progression. To clarify the role of exosomes in cancer progression, trace amounts of proteins in their lumen and membrane fractions should be analyzed separately. For this purpose, an adequate and easy-to-use method of separating the lumen and membrane fractions of exosomes must be developed. Further, because exosomes contain only trace amounts of proteins, an ultrasensitive protein detection method is necessary. To develop an adequate and easy-to-use lumen and membrane fraction separation method, we applied a commercially available kit originally developed for cells to exosomes and examined the validity of the results compared with those obtained using a conventional, complicated Na2CO3 method. To develop an ultrasensitive protein detection method, we designated GRP78, which is upregulated in cancer cells and contributes to cancer progression, as the target protein and detected it at the subattomolar level using an ultrasensitive ELISA combined with thio-NAD cycling. By applying these methods together, GRP78 was successfully quantified in both the lumen and membrane fractions of exosomes obtained from cultured cancer cells. The present results will facilitate studies to broaden our understanding of the tumor microenvironment.


Assuntos
Exossomos , Neoplasias , Ensaio de Imunoadsorção Enzimática/métodos , Exossomos/metabolismo , Membranas , Neoplasias/metabolismo
5.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010879

RESUMO

Cancer cells communicate with each other via exosomes in the tumor microenvironment. However, measuring trace amounts of proteins in exosomes is difficult, and thus the cancer stemness-promoting mechanisms of exosomal proteins have not been elucidated. In the present study, we attempted to quantify trace amounts of 78-kDa glucose-regulated protein (GRP78), which is involved in cancer progression, in exosomes released from cultured gastric cancer cells using an ultrasensitive ELISA combined with thio-NAD cycling. We also evaluated the cancer stemness-promoting effects by the application of high-GRP78-containing exosomes to cultured gastric cancer cells. The ultrasensitive ELISA enabled the detection of GRP78 at a limit of detection of 0.16 pg/mL. The stemness of cancer cultured cells incubated with high-GRP78-containing exosomes obtained from GRP78-overexpressed cells was increased on the basis of both an MTT assay and a wound healing assay. Our results demonstrated that the ultrasensitive ELISA has strong potential to measure trace amounts of proteins in exosomes. Further, exosomes with a high concentration of GRP78 promote the cancer stemness of surrounding cells. The technique for quantifying proteins in exosomes described here will advance our understanding of cancer stemness progression via exosomes.

6.
J Clin Med ; 10(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34768717

RESUMO

An enzyme-linked immunosorbent assay (ELISA) can be used for quantitative measurement of proteins, and improving the detection sensitivity to the ultrasensitive level would facilitate the diagnosis of various diseases. In the present review article, we first define the term 'ultrasensitive'. We follow this with a survey and discussion of the current literature regarding modified ELISA methods with ultrasensitive detection and their application for diagnosis. Finally, we introduce our own newly devised system for ultrasensitive ELISA combined with thionicotinamide adenine dinucleotide cycling and its application for the diagnosis of infectious diseases and lifestyle-related diseases. The aim of the present article is to expand the application of ultrasensitive ELISAs in the medical and biological fields.

7.
Microorganisms ; 9(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835340

RESUMO

To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10-19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.

8.
Biol Pharm Bull ; 44(9): 1332-1336, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34148926

RESUMO

Antigen tests for infectious diseases are inexpensive and easy-to-use, but the limit of detection (LOD) is generally higher than that of PCR tests, which are considered the gold standard. In the present study, we combined a sandwich enzyme-linked immunosorbent assay (ELISA) with thionicotinamide-adenine dinucleotide (thio-NAD) cycling to improve the LOD of antigen tests for coronavirus disease 2019 (COVID-19). For recombinant nucleocapsid proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the LOD of our ELISA with thio-NAD cycling was 2.95 × 10-17 moles/assay. When UV-irradiated inactive SARS-CoV-2 was used, the minimum detectable virions corresponding to 2.6 × 104 RNA copies/assay were obtained using our ELISA with thio-NAD cycling. The assay volume for each test was 100 µL. The minimum detectable value was smaller than that of the latest antigen test using a fluorescent immunoassay for SARS-CoV-2, indicating the validity of our detection system for COVID-19 diagnosis.


Assuntos
Anticorpos Antivirais , Teste para COVID-19/métodos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , NAD/análogos & derivados , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2 , Antígenos Virais , COVID-19/virologia , Humanos , Testes Imunológicos , Limite de Detecção , Nucleocapsídeo/análise , Sensibilidade e Especificidade
9.
Biophys Physicobiol ; 18: 28-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954080

RESUMO

PCR diagnosis has been considered as the gold standard for coronavirus disease 2019 (COVID-19) and other many diseases. However, there are many problems in using PCR, such as non-specific (i.e., false-positive) and false-negative amplifications, the limits of a target sample volume, deactivation of the enzymes used, complicated techniques, difficulty in designing probe sequences, and the expense. We, thus, need an alternative to PCR, for example an ultrasensitive antigen test. In the present review, we summarize the following three topics. (1) The problems of PCR are outlined. (2) The antigen tests are surveyed in the literature that was published in 2020, and their pros and cons are discussed for commercially available antigen tests. (3) Our own antigen test on the basis of an ultrasensitive enzyme-linked immunosorbent assay (ELISA) is introduced. Finally, we discuss the possibility that our antigen test by an ultrasensitive ELISA technique will become the gold standard for diagnosis of COVID-19 and other diseases.

10.
Anal Sci ; 37(10): 1469-1472, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33746140

RESUMO

An enzyme immunoassay, in which an enzyme (e.g., alkaline phosphatase, ALP) is conjugated with an antibody, is a precise and simple protein detection method. Precise measurements of enzymes at low concentrations allow for ultrasensitive protein detection. The application of a phosphorylated substrate to ALP, followed by using a dephosphorylated substrate in thionicotinamide-adenine dinucleotide cycling, provides a simple and precise quantification of ALP. We describe a protocol for detecting ALP at the zeptomole level using a simple colorimetric method.


Assuntos
Fosfatase Alcalina , Colorimetria , Técnicas Imunoenzimáticas , Proteínas
11.
Adv Clin Chem ; 101: 121-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706887

RESUMO

Accurate, rapid and simple detection methods are required to facilitate early diagnosis of various disorders including infectious and lifestyle diseases as well as cancer. These detection approaches reduce the window of infection, i.e., the period between infection and reliable detection. Optimally, these methods should target protein as an indicator of pathogenic microbes as well as other biomarkers. For example, although nucleic acid is easily detected by polymerase chain reaction (PCR), these markers are also present in dead microbes, and, in the case of mRNA, it is not known whether this target was successfully translated. Accordingly, early diagnostic approaches require the development of ultrasensitive protein detection methods. In this chapter, we introduce an ultrasensitive enzyme-linked immunosorbent assay (ELISA) which combines a traditional sandwich-based immunoassay with thionicotinamide adenine dinucleotide (thio-NAD) cycling. The performance characteristics of this unique approach are reviewed as well as its potential role in providing a novel and ultrasensitive diagnostic tool in the clinical laboratory.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Biomarcadores , Humanos , Limite de Detecção , Ácidos Nucleicos/química , Proteínas/química
12.
EBioMedicine ; 60: 103007, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32949995

RESUMO

BACKGROUND: Nucleic acid amplification tests (NAATs) are widely used to diagnose tuberculosis (TB), but cannot discriminate live bacilli from dead bacilli. Live bacilli can be isolated by culture methods, but this is time-consuming. We developed a de novo TB diagnostic method that detects only live bacilli with high sensitivity within hours. METHODS: A prospective study was performed in Taiwan from 2017 to 2018. Sputum was collected consecutively from 1102 patients with suspected TB infection. The sputum was pretreated and heated at 46°C for 1 h to induce the secretion of MPT64 protein from live Mycobacterium tuberculosis. MPT64 was detected with our ultrasensitive enzyme-linked immunosorbent assay (ELISA) coupled with thionicotinamide-adenine dinucleotide (thio-NAD) cycling. We compared our data with those obtained using a culture test (MGIT), a smear test (Kinyoun staining), and a NAAT (Xpert). FINDINGS: The limit of detection for MPT64 in our culture-free ultrasensitive ELISA was 2.0 × 10-19 moles/assay. When the criterion for a positive response was set as an absorbance value ≥17 mAbs, this value corresponded to ca. 330 CFU/mL in the culture method - almost the same high-detection sensitivity as the culture method. To confirm that MPT64 is secreted from only live bacilli, M. bovis BCG was killed using 8 µg/mL rifampicin and then heated. Following this procedure, our method detected no MPT64. Our rapid ultra-sensitive ELISA-based method required only 5 h to complete. Comparing the results of our method with those of culture tests for 944 specimens revealed a sensitivity of 86.9% (93/107, 95% CI: 79.0-92.7%) and a specificity of 92.0% (770/837, 95% CI: 89.9-93.7%). The performance data were not significantly different (McNemar's test, P = 0.887) from those of the Xpert tests. In addition, at a ≥1+ titer in the smear test, the positive predictive value of our culture-free ultrasensitive ELISA tests was in a good agreement with that of the culture tests. Furthermore, our culture-free ultrasensitive ELISA test had better validity for drug effectiveness examination than Xpert tests because our test detected only live bacilli. INTERPRETATION: Our culture-free ultrasensitive ELISA method detects only live TB bacilli with high sensitivity within hours, allowing for rapid diagnosis of TB and monitoring drug efficacy. FUNDING: Matching Planner Program from JST (VP29117939087), the A-STEP Program from JST (AS3015096U), Waseda University grants for Specific Research Projects (2017A-015 and 2019C-123), the Precise Measurement Technology Promotion Foundation to E.I.


Assuntos
Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Ensaios Clínicos como Assunto , Ensaio de Imunoadsorção Enzimática , Humanos , Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico
13.
Diagnostics (Basel) ; 10(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823866

RESUMO

Polymerase chain reaction (PCR)-based antigen tests are technically difficult, time-consuming, and expensive, and may produce false negative results requiring follow-up confirmation with computed tomography. The global coronavirus disease 2019 (COVID-19) pandemic has increased the demand for accurate, easy-to-use, rapid, and cost-effective antigen tests for clinical application. We propose a de novo antigen test for diagnosing COVID-19 using the combination of sandwich enzyme-linked immunosorbent assay and thio-nicotinamide adenine dinucleotide (thio-NAD) cycling. Our test takes advantage of the spike proteins specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The limit of detection of our test was 2.3 × 10-18 moles/assay. If the virus has ~25 spike proteins on its surface, our method should detect on the order of 10-20 moles of virus/assay, corresponding to ~104 copies of the virus RNA/assay. The detection sensitivity approaches that of PCR-based assays because the average virus RNA load used for PCR-based assays is ~105 copies per oro- or naso-pharyngeal swab specimen. To our knowledge, this is the first ultrasensitive antigen test for SARS-CoV-2 spike proteins that can be performed with an easy-to-use microplate reader. Sufficient sensitivity can be achieved within 10 min of thio-NAD cycling. Our antigen test allows for rapid, cost-effective, specific, ultrasensitive, and simultaneous multiple measurements of SARS-CoV-2, and has broad application for the diagnosis for COVID-19.

14.
Int J Infect Dis ; 96: 244-253, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32353548

RESUMO

OBJECTIVES: This study examined Mycobacterium tuberculosis (MTB)-secreted MPT64 as a surrogate of bacterial viability for the diagnosis of active pulmonary TB (PTB) and for follow-up treatment. METHODS: In this proof-of-concept prospective study, 50 PTB patients in the Tokyo metropolitan region, between 2017 and 2018, were consecutively included and 30 healthy individuals were also included. Each PTB patient submitted sputum on days 0, 14 and 28 for diagnosis and follow-up, and each healthy individual submitted one sputum sample. The following were performed: smear microscopy, Xpert MTB/RIF, MGIT and solid culture, and MPT64 detection on the sputum samples. Ultrasensitive ELISA (usELISA) was used to detect MPT64. The receiver operating characteristic analyses for diagnosis and follow-up revealed the optimal cut-off value of MPT64 absorbance for detecting culture positivity at multiple intervals. RESULTS: The sensitivity of MPT64 for diagnosing PTB was 88.0% (95% CI 75.7-95.5) and the specificity was 96.7% (95% CI 82.8-99.9). The specificity of MPT64 for predicting negative culture results on day 14 was 89.5% (95% CI 66.9-98.7). The sensitivity of MPT64 for predicting positive culture results on day 28 was 81.0% (95% CI 58.1-94.6). CONCLUSIONS: This study revealed that MPT64 is useful for diagnosing active PTB in patients and predicting treatment efficacy at follow-up.


Assuntos
Antígenos de Bactérias/análise , Ensaio de Imunoadsorção Enzimática/métodos , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Mycobacterium tuberculosis/fisiologia , Estudos Prospectivos , Sensibilidade e Especificidade , Tóquio , Tuberculose Pulmonar/diagnóstico
15.
Diagnostics (Basel) ; 9(3)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323782

RESUMO

For the diagnosis of disease, the ability to quantitatively detect trace amounts of the causal proteins from bacteria/viruses as biomarkers in patient specimens is highly desirable. Here we introduce a simple, rapid, and colorimetric assay as a de novo, ultrasensitive detection method. This ultrasensitive assay consists of a sandwich enzyme-linked immunosorbent assay (ELISA) and thionicotinamide-adenine dinucleotide (thio-NAD) cycling, forming an ultrasensitive ELISA, in which the signal substrate (i.e., thio-NADH) accumulates in a triangular manner, and the accumulated thio-NADH is measured at its maximum absorption wavelength of 405 nm. We have successfully achieved a limit of detection of ca. 10-18 moles/assay for a target protein. As an example of infectious disease detection, HIV-1 p24 could be measured at 0.0065 IU/assay (i.e., 10-18 moles/assay), and as a marker for a lifestyle-related disease, adiponectin could be detected at 2.3 × 10-19 moles/assay. In particular, despite the long-held belief that the trace amounts of adiponectin in urine can only be detected using a radioisotope, our ultrasensitive ELISA was able to detect urinary adiponectin. This method is highly versatile because simply changing the antibody enables the detection of various proteins. This assay system requires only the measurement of absorbance, thus it requires equipment that is easily obtained by medical facilities, which facilitates diagnosis in hospitals and clinics. Moreover, we describe an expansion of our ultrasensitive ELISA to a non-amplification nucleic acid detection method for nucleic acids using hybridization. These de novo methods will enable simple, rapid, and accurate diagnosis.

16.
BMJ Open Diabetes Res Care ; 7(1): e000661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245009

RESUMO

Objective: The chronic kidney disease (CKD) is widely diagnosed on the basis of albuminuria and the glomerular filtration rate. A more precise diagnosis of CKD, however, requires the assessment of other factors. Urinary adiponectin recently attracted attention for CKD assessment, but evaluation is difficult due to the very low concentration of urinary adiponectin in normal subjects. Research design and methods: We developed an ultrasensitive ELISA coupled with thionicotinamide-adenine dinucleotide cycling to detect trace amounts of proteins, which allows us to measure urinary adiponectin at the subattomole level. We measured urinary adiponectin levels in 59 patients with diabetes mellitus (DM) and 24 subjects without DM (normal) to test our hypothesis that urinary adiponectin levels increase with progression of CKD due to DM. Results: The urinary adiponectin levels were 14.88±3.16 (ng/mg creatinine, mean±SEM) for patients with DM, and 3.06±0.33 (ng/mg creatinine) for normal subjects. The threshold between them was 4.0 ng/mg creatinine. The urinary adiponectin levels increased with an increase in the CKD risk. Furthermore, urinary adiponectin mainly formed a medium-molecular weight multimer (a hexamer) in patients with DM, whereas it formed only a low-molecular weight multimer (a trimer) in normal subjects. That is, the increase in urinary adiponectin in patients with DM led to the emergence of a medium-molecular weight form in urine. Conclusions: Our new assay showed that urinary adiponectin could be a new diagnostic index for CKD. This assay is a non-invasive test using only urine, thus reducing the patient burden.


Assuntos
Adiponectina/urina , Biomarcadores/urina , Nefropatias Diabéticas/complicações , Insuficiência Renal Crônica/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/urina , Adulto Jovem
17.
Biotechniques ; 66(5): 240-242, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30955344

RESUMO

We propose a new detection method for a tuberculosis-specific protein, MPB64, obtained from active bacillus Calmette-Guérin (BCG) by heating. When BCG was included in solution at a concentration >2.75 × 104 CFU/ml, our method for collecting MPB64 through heating active BCG combined with an immunochromatographic assay detected active bacilli within 2.5 h. By contrast, a culture test, which is the gold standard for tuberculosis diagnosis, does not provide results for between 1 week and 2 months. The rapid tests based on PCR have some drawbacks, for example they detect DNA from both active and latent (or even dead) tubercle bacilli. Therefore, our method may pave the way toward detecting only active tubercle bacilli at a reasonable cost and providing same-day diagnosis.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Mycobacterium bovis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cromatografia de Afinidade , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose/genética , Tuberculose/microbiologia
18.
Front Microbiol ; 9: 1346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988537

RESUMO

Since the spring of 2013, human infections with H7N9 viruses have been detected in China. Some of these viruses have become highly pathogenic. Highly and low pathogenic avian influenza H7N9 viruses are currently co-circulating with the seasonal influenza A viruses H3N2 and H1N1pdm09. Prompt identification and isolation of H7N9 patients is one measure to prevent the spread of H7N9 virus and help prevent a pandemic. The majority of commercially available point-of-care rapid influenza diagnostic kits can differentiate between influenza A and B viruses, but cannot distinguish between H7N9 viruses and seasonal influenza A viruses. Accordingly, we have developed a rapid diagnostic kit specific for the H7 subtype that is accessible, easy to use. Although the detection limit of this H7 kit is one-tenth lower than that of a commercially available rapid influenza A and B diagnostic kit of similar design, except for the specificity of the monoclonal antibodies used, this kit is highly specific, detecting only H7-subtype influenza viruses, including the recent highly pathogenic H7N9 viruses from humans, and does not show any non-specific reactions with other HA subtypes. This H7 kit will be of value for the early detection of H7N9-infected patients.

19.
Commun Integr Biol ; 9(1): e1124201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064305

RESUMO

Each cell produces its own responses even if it appears identical to other cells. To analyze these individual cell characteristics, we need to measure trace amounts of molecules in a single cell. Nucleic acids in a single cell can be easily amplified by polymerase chain reaction, but single-cell measurement of proteins and sugars will require de novo techniques. In the present study, we outline the techniques we have developed toward this end. For proteins, our ultrasensitive enzyme-linked immunosorbent assay (ELISA) coupled with thionicotinamide-adenine dinucleotide cycling can detect proteins at subattomoles per assay. For sugars, fluorescence correlation spectroscopy coupled with glucose oxidase-catalyzed reaction allows us to measure glucose at tens of nM. Our methods thus offer versatile techniques for single-cell-level analyses, and they are hoped to strongly promote single-cell biology as well as to develop noninvasive tests in clinical medicine.

20.
Biotechniques ; 59(6): 359, 361-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26651515

RESUMO

To minimize patient suffering, the smallest possible volume of blood should be collected for diagnosis and disease monitoring. When estimating insulin secretion capacity and resistance to insulin in diabetes mellitus (DM), increasing insulin assay immunosensitivity would reduce the blood sample volume required for testing. Here we present an ultrasensitive ELISA coupled with thio-NAD cycling to measure immunoreactive insulin in blood serum. Only 5 µL of serum was required for testing, with a limit of detection (LOD) for the assay of 10(-16) moles/assay. Additional recovery tests confirmed this method can detect insulin in sera. Comparisons between a commercially available immunoreactive insulin kit and our ultrasensitive ELISA using the same commercially available reference demonstrated good data correlation, providing further evidence of assay accuracy. Together, these results demonstrate our ultrasensitive ELISA could be a powerful tool in the diagnosis and treatment of not only DM but also many other diseases in the future.


Assuntos
Diabetes Mellitus/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Insulina/sangue , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/imunologia , Humanos , Insulina/imunologia , Limite de Detecção , NAD/análogos & derivados , NAD/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...